	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LON	ERE	
	Regular/Supplementary Summer – 2023		
	Course: B. Tech. Branch: Semester:		
	Subject Code & Name : BTEEC602 - Electrical Machine Design		
	Max Marks: 60Date:Duration: 3 Hr.		
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 		
		(Level/CO)	Marks
Q.1	Solve Any Two of the following.		12
A)	What are the considerations to be made while designing a electrical machines?	C01	6
B)	Explain different types of Electrical Engineering Materials	C01	6
C)	Explain important properties of Insulating materials.	CO1	6
Q.2	Solve Any Two of the following.		12
A)	Describe the functions of motor starter.	CO2	6
B)	Classify the insulating material on the basis of their permissible temperature rise.	CO2	6
C)	Explain standard Rating of Electrical Machines.	CO2	6
Q. 3	Solve Any Two of the following.		12
A)	Describe Design of Squirrel cage Rotor.	CO4	6
B)	Explain the factors on which selection of rotor slots depends.	CO4	6
C)	Derive output equations of Induction motors.	CO3	6
Q.4	Solve Any Two of the following.		12
A)	What are the different types of leakage fluxes in an induction motor also mentioned the derivation based on.	CO3	6
B)	What are the cooling methods of transformer describe in detail.	CO5	6
C)	Drive the relationship between mechanical overload ratio and heating overload ratio.	CO5	6
0.5	Solve Any Two of the following.		12
(1) (A)	Compare between Distribution Transformer and Power Transformer	CO6	6
B)	Derive Output Equation of Transformer	CO6	6
C)	Calculate approximate overall dimensions for a 200 KVA, 6600/440 volt, 50 Hz, 3ph core	CO6	6
	type transformer. The following data may be assume, emf per turn=10V,		Ŭ
	Max. flux density=1.3 wb/m ² ,		
	Current density=0.5 amp/mm ² , window space factor=0.3,		
	Overall height=overall width, stacking factor 0.9. use a 3 stepped core.		
	For a 3 stepped core width of largest stamping= $0.9D$ and net iron are $=0.6d^2$ where D is the		
	diameter of circum scrabing circle.		
	*** End ***		

The grid and the borders of the table will be hidden before final printing.